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A numerical investigation is carried out to analyze the effects of the outer boundary
conditions on the. viscous ipstability of accretion discs. A one-dimensional polytropic
timne dependent calculations of geomnetrically thinaccretion discs is used. When the
outer boundary is reflective, oscillations arc trapped between the outer boundary and
theouter edge of theinner evanescent region. When the outer boundary is ~[o])-reflective
the oscillations decay ona viscoustime scale. An analytical treatment of numerically
non-reflective boundary conditions is carricd out for a polytropic flow and for agas

including radiation.
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1 INTRODUCTION

Kato (1978) and Blumnenthal, Yang & Lin (1984) (sce also
Carroll et al. 1985 and the references therein) have carried
out local analyses of the stability of accretion discs. ‘I°}1 cy
found that the alpha disc model admits radial pulsational
unstable1egions. Thesc unstable regions are duc to local
variations of the viscosity. The stability criterionis strongly
associated with the dependence Of the viscosity 011 thie den-
sity and temperature during oscillations: oscillations arc ex-
cited w hen the viscosity increases in the comp essed phase
iu comparison to the expanded phase.

A first global analysis of oscillations in accretion discs
was carricdout by 1 ’apaloizou aud Stanley (1986), w},o use a
polylt opic approximation to study analyticall y and numer-
ically the mechanism by which overstable oscillations can
evolve and dissipate in accretion discs. Okuda & Mincshige
(1991) aud Okuda et al. (1992) also examine the time evo-
lution of the radial pulsational instabilities found try Kato
(1978) and Blumenthal et al. (1984) using a one-dimensional
hydrodynamic code including radiation. The high amplitude
oscillations appearinthe numerical calculations only inthe
outer region of the disc {r > 3R,).1n the imnapart of
the discandfor low value of thealpha viscosity parameter
(a < 1), the oscillations decrease due to the propagation
propertics of short waves. 1 lowever, when a1, the oscilla-
tions donot decay inthe inner part of the disc. Papaloizou
& Stanley (1986) furthermore stress that the local instabili-
ties are not expected to appear in the outer part of the disc,
unless one considers the disc boundaries. Oscillations arc ex-
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pected inthe outer region of the disc only if the outer bound-
ary is reflective (for example a frec or a rigid boundary).
So far,no calculations were carr icd out with non-reflective
boundary conditions, the previous authors have assumed a
numcrically reflective outer boundary without justifying or
specifying its physical origin. The outer boundary is numer-
ically reflective since the mflow boundary conditions are im-
poscd directly on the primitive variables. In a realistic sit-
uation, the boundary conditions arc the specification of the
conditions which exist outside the computational domain.
The inflowing characteristics of the flow, which propagate
inward into the computational domain, carry with them the
conditions through the boundary. Therefore, the boundary
conditions have to  beimposed ori the inflowing character-
istics of theflow, aud nol 011 the primitive variable. The
imposition of the conditions on the inflowing characteristics
of the flow leads tonon-reflective boundary conditions.

Inthis work, wc prove numerically that thelocal insta-
bilitics do not appear inthe outer part of the disc, when
a proper treatment of non-reflective boundary conditions is
carricd out. Whenone carries out a numnerical investigation
of the viscous instability, one has to take into account that
theresulting oscillations obtained canbean artificial result
of the wyong treatment of the boundary conditions. A phys
ical reflective outer boundary, however, could bethe outer
edge of the disc where the density drops (free boundary), or,
forexawmple, a high density spiral arm, tidally excited by a
companion star (rigid boundary).

In section 2 we present the equations and assumptions
made 011 the physical model, together with the numerical
mecthod. Inscction 3 we give an analytical treatment of non-
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reflective boundary conditions for a polytropic flow. Thiere-
sults are presented and discussed insection 4.

2 EFQUATIONS AND ASSUMPTIONS
2.1 Equations

A polytropic liquation of State is assumnced. The equations
arc written in cylindrical coordinates (r, ¢, 2), they include
the gravity of the star and a viscous term. Thetreatment
is one-dimensional (in r). The disc and the boundary layer
arc assumed to bein hydrostatic equilibrium and geometri-
cally thinin the vertical direction (2). The equations can be
written for the momenta U = pv, and W = pug = pr§d in
the following manner:

the conservation of mass

%)

((,)f 4 div[p} = 0, (1)
the conscrvation of radial momentum

ou . w? aop oV

ou- s, L _eb oV

o { div[tU] p o TP Iy (2)

the conscrvation of angular momentum

ow uw

Py 4 div[dW] h’ﬂ == Iy, (3)
where

g 1O U
divlif] - " By |_pf] .

The viscous force in the radial equation of motion is given
by

b 04, o (1w
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while in the azimuthal equation of motion the viscous term
is

. 10 [ ‘M’m].

2 Or Or
Vis the gravitational potential of the star:
GM

1

V..

In genceral, one defines an average density p through the
relation 23 = 2Hp = fjfll p(2)dz. Here the density is de-

fined through the relation 3} = j:}'::" p(z )dz =2pH, 0,
which bolds for all Hyan > H(z). Tnserting 2 = 2pHuas
into the usual vertically integrated equations [sce for ex-
ample Savonije, Papaloizou and 1in (1994), for such cqua-
tions] leads to the above sct of equations. 1 his is completely
cquivalent to solving the equations for the mid-plane central
quantitics, therefore allowing o = pe. The pressure is given

by:
17 s Kpttti (4)

where K is the polytropic constant and i is the polytropic
index.

2.2 Boundary conditions

In this subscction, we present the physical boundary condi-
tions which can be imposed on the one-dimensional flow at
the boundarics. If these conditions arc imposed directly on
the 'primitive’ variables of the flow (p, v, and ), the bound-
ary becomes reflective. In order to ensure a non-reflective
boundary, the conditions have to bennposed on thein-
coming characteristics of the flow. Inscclion 3, wc carry
OUL an analytical trcatment of non-reflective boundary con-
ditions (sce Givoli 1991, for a review of non-reflective bound-
ary conditions).

The inner boundary of the computational domain is the
rotating stellar surface (r = K, )through whichmatter flows
into the star at a constant rate (M). The outer boundary of
the computational domainis theinner edge of the disc and
rotates atKeplerian velocity. Thegas enters this boundary
at the same 1 ate as it leaves through the inner boundary
(M).

2 . 3 Initial conditions

Since the equations arc time dependent, initial conditions
have to be specified. The imtial conditions used here ave
the supcerposition of anatmosphere and aninflowing disc of
matter. Theinitial pressure is given through the cquation of
state. The initial radial momentum is obtaiued through the
relation M = const.

2.4 Viscosity prescription

Since we arcinterested to study. the viscous instabihty of
the standard thin disc model, the standard ¢« viscosity pre-
scription is used for the viscosi Ly law (Shakura & Sunyaev
1973)

vz acsH, (8)

where ¢2 = v17/p. In the calculations we chose « =: 0.1,

2.5 The numerical method

The spatial dependence of the equations is treated with a
Chebyshevmethod of collocation, (Got tlich & Orszag 1977,
Voigt, Gotthich & Hussaini 1984, Canuto et al. 1988), while
ancexplicit fourth order Runge Kutta method is used for the
time dependence of the equations. The Chebyshev spectral
method was described in Godon, Regev & Shaviv (1995)
and Godon ( 1995). The Cliebyshev method is.appropriate
for non-periodic boundary conditions and the repartition of
the grid points is higher at the boundaries.

Iu the present work, the method is improved such that
the g id spacing is Ax =2 1 /N? at the inmer boundary and
Az ez 1 /N at the outer boundary ({0s101[ & Tal-Yzer 1 993).

The Chebyshev method is further implemented by the usc
of Fast Fourier Transform and spectral filters.

3 THE OPEN BOUNDARY

When hyperbolic equations are solved numerically, instabil-
ities frequently appear, due to the iricorrect trcatiment of
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the boundary conditions (Gottlicb, Gunzburger & Turkel
1982). Morcover,in sonic cascs, the incorrect treatments of
the boundary conditions, even if stable, can introducc addi-
tional periodic components to the solution (Abarbanel ct al.
1991 ). Tor the treament of the boundary conditions at an
open boundary, the full Navicr-Stokes cquations cau be con-
sidered as almost, hyperbolic, since the effect of the viscosity
is negligible there, whilcat a rigid boundary the viscous ¢f-
fects are dominant . In order Lo avoid instabilities and addi-
tional periodic phenomena, one has Lo impose the boundary
conditions on the incoming characteristic variables rather
than on the natur al variables. The principle is to propagate
the flow invariants along the char acteristic lines through the
boundary. For one dimensional problems the flow invariants
of the Fuler equations ar ¢ the Riemann invariants. The Rie-
mann invariants arc divided into those propagating out of
the domain of computation and those carried into it. It is
therefore, required Lo provide boundary conditions for the
inflow vaniables, while the outflow variables arc determined
by their calculated values alongthe characteristic lines.

T'herefor ¢, the treatment of the outer’ boundary is car-
ried out in the following manner. Fquations (1-4) arc rewrit-
ten as an homogencous hyperbolic system:

8 o
vo“ - vy _;’4' - 0,
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Eu I p= by By (G)
buy Bvp 4+ 1 8P _

ot HUr 5, o or T 0.

Making usc of the relation F = Kp" (y=1- 1/n), and the
sound speed ¢2 =y P/p, we find:
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Adding and subtracting the last two equations lcads to
an homogencous hyperbolic system for the characleristics
(cigenvectors) of the flow:

[ 4 va] ves o, (1)
[£-1U 4e)d] U1 2ne)=0, (1) (8)

[{.)’t a1 (v, ¢ )a,] (v 2ne,) = 0, U1

w here v, vy -le, and v, - ¢, arc the cigenvalues associated
with the eigenvectors (charateritics) vg (1}, vy 4 2nc, (11),
and v, - 2nc, (111) respectively. When the flow is subsonic,
thefast outflow characteristics at the outer radial boundary
r= o is (1), while the fast inflow characteristic is (/17).
The slow characleristics (1), is /incoming when u, < 0
and outgoing when v, > 0. (When the flow is supersonic
all the quantities (1),(11),(I1) are incoming for negative ra-
dial velocity and outgoing for positive radial velocity). The
boundary conditions arc then imposed on the flow charvacter-
istics in the following manuer: exact values from outside the
boundary arciimposed cm the inflow variables, while values
obtained from the computation at the boundary arcimposed
on the outfiow variables. For vy positi ve (and subsonic) one
solves the system

Viscous instabilily in acerction discs 3

(1) = ().
(1/) =(11). 9)
(111 = (111)e,

while fornegative u, (and subsonic)one solves the system

()=
(I1) = :(11)6 (lo)
(11y= (111

The exact values (the standard thin Keplerian disc model)
arc denoted by ¢ andthe values computed at the outer
boundary arc denoted by c. This system of equations is then
solved for the dependent variables p,vr,ve. The solution for
vg is trivial, while the solutions for vy and g can be consid-
cred as a rectification of the boundary conditions imposed
on v, and ¢y

Ur = (Ur)e + [f\;’r = 2"'4\'29' s

(11)
Cs = (Cs)c‘f [Z;:;! 4 Ar,]’

with

~ nct "
re (n+ K|

and Avy = (Ur)e - (vr e, Bcs = (€a)e — (€s)e. The terms in
thesquarred brackets (eq.11) arc the rectification terms. T'he
values taken by the primitive variables at the open boundary
are not especially equal to the values imposed there. In fact
the above equations allow the variables to Lake the values
which propagate through the open boundary. As the solution
approaches steady state, the rectifications terms becomes
negligibie, and the primitive variables take the values which
are imposed at the boundary (this is true when the imposed
valuc is the steady state solution or a good approximation
Lo it).

This particular treatment of the boundary conditions
has the advantage of avoiding numerical instabilities orig-
inating from the boundary and it assures norl-reflecting
boundary conditions.

I fowever, the treatment carried out here for a polytropic
flow canmot be carried oul for a more realistic flow. Inthe
Appendix, we carry out an approximate treatment (a lin -
carization of the equations) for a flow with anequation of
state of the for m P = RpT /4 a7 /3. The equations also
include the energy equation.

4 RESULTSAND I1ISCUSS10NS

In the work presented here, we calculate mainly two mod-
cls.T'he models arc exactly the same execpt for the outer
boundary conditions. In model 1w impose non -reflective
boundary conditions at the outer boundary, while in model
2 we impose reflective boundary conditions.

Inthe two modelsv, = v, n = 3 and K is chosen
such that (J1/r) = 0.02 at the outer boundary. If we define

= nlr = ecfr8lx, then the polylropic constant can be
written
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Figurce 1. The Mach number v, /¢, is shown as a function of the
radius 1/ Ry for niodel 1. Fight snapshots are taken at different
times to show how the model relaxes in theinner part of the
disc. Heretheouter noll-reflective boundary has bieen placed at
r:2H,. The initial perturbation (due to the initial condition
which is only a guess of the solution) propagates outward and
exitsthe outer boundary without any refle ction Or oscilla tions.

K- 2303,
B (” -{ ]) 1/") (12)

where Z. = V2nrc aorl po is the mid-plane value of the den-
sity (sex forexample Papaloizou & Stanley 1986, Bisnovatyi-
Kogan 1993). The number of grid points is N = 256. The
unit of length is R, and the unit of time is Q3" (R, ). Since
we are nol interested Lo solve for the structure of the bound-
a1 y layer, but rathet for the oscill ati ons in the out er par L Of
the disc, we choose 2, = 0.98€ ¢ for numerical convenience
(sce below). In both models o == 0.].

After a fcw dynamic times (€23 (J2.)) the modcls al-
ready approach steady state, however their evolution is fol-
lowedon a viscous time scale. Yor this particalar value of
the viscosity parameter (e=20.1) Lhc viscous instability dots
not mnduce oscillations in the inner part of the disc and the
1 adial infall velocity stays subsonic (I apaloizou & Stanley
1086, sce also Paczynski ] 991). Moreover, since at the inner
boundary the stellar surface rotates at a rate 2,=0.98 Qg
the inner par t of the disc is sustained by the centrifugal
force, and the 1 adial infall velocity in the boundary layer is
not much different than in the outer disc. This situation is
quite different from the one in which the angular velocity
drops in the boundary layer and the inner part of the disc
is sustained by the pressure force only. In this latter case
theradialinfall velocity inthe boundary layer is very large.
We assumed that at the outer stellar envelop €2, = 0.98 Q)
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Figure 2. Thie Machnumber is shown as a function of theradius
for modeli (left)and 2 (right). Six snapshots arc taken at differ-
cuttimes to show the evolution of mo dels ona viscous time scale.
Inthis case the outer boundary has been placed at r = 512,.

inorder to avoid to deal with the numerical diflicultics of a
large gradient of the velocity in the inner part of the disc.
This explains why in both models the Mach numer in the
inuer par L of the disc is not much different than in the rest
of the disc. Thishasno effect onthe results inthe outer part
of the disc and is somewhat equivalent to solving for a disc
without Bl,, assuming for example 8Q0/8r = O at r == R,.

Inthe inner part of the disc, oscillations duc to the re-
laxation of the modecls propagate outward and decay with
time.In figure 1 we show the evolution of model 1 for
t < 100. For this particular case we have placed the outer
boundary at I8, = 2R.. The oscillations exi L the outer
bowdary without being reficcted. The numerical scheme is
very stable and no instability appears at the boundary.

In order to study the effect of the boundar‘y conditions
onthe viscous instability, wc place the outer boundary at
Rowt = 5. We expect the oscillations t o appear in the
outer part of the disc (r > 3/2.,Papaloizou & Stanley 1986,
Okuda ¢t al. 1992, Okuda & Mineshige 1991 ), The Mach
number v, /¢, is shown for models1 and 2 in figures 2, at
diller ent, times. The umt of time is the dynamic time. At
the beginuing of the evolutions, small amplitude oscillations
propagates”outward fron the inner part of the disc, duc to
the relaxation of the models (like in figure 1). Inthe outer
part of the disc, high amplitude oscillations appear. In model
1, the amphtude of the oscillations decays on a viscous titue
scale, Howcver, in model 2 the amplitude of the oscillations
docs not change with time. Att 23900, the amphitudeof the



oscillations innodel 1 is lessthan 0.01 whileinmodel 2 it
is still morc than 0.5.

11 was altcady pointed out by Papaloizou & Stanley
(1986) that the viscous instability was foundin the context
of local analysis(Kato 1978 and Blumenthal et al. 1984).In
the global analysis of Papaloizou & Stanley (1 986) the vis-
cous instability is expected to appear in the outer’ part of the
disc, whenthcouter boundary is reflective. Inthis casc the
oscillations can be trapped between the outer boundary and
thc outer edge of the inner evancscent region. However, no
non-reflective boundary conditions were imposed to actually
verify the globaleflcct of boundary conditions on theinsta-
bility. in this work wc have provennumericallythat reflective
boundary conditions lead to oscillations, while non-reflective
boundary conditionslead to a stable disc, in whichthe oscil-
lations decayon a viscous time scale. Jurthermore, we have
developed a treatment for non-reflective boundary condi-
Lions for a polytropic flow, while for mom realistic flows, an
approximation is carricd out inthe Appendix. This work is
an additional proof that local instabilities (andinfact in-
stabilitics of any sort)inaccretion discs, do not especially
imply that a disc will beunstable globally. Forthe present
Case, the viscous instability in the disc will appear if a physi-
ialreflective outer boundary exists. This boundary can be,
for e xample, a high density region, like & high density spiral
arms (Godon 1995) for med by the tidal influcnce of a com-
panion star (Savonije ct al. 1994).
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Al PENDIX A: NO N-REFLECTIVE
1)0 UNI)AR% CX)NI)1TIONS FOR A GAS WITI1I
RADIATION

I this appendix; w ¢ treat non-reflective boundary condi-
tions for a general flow including gas and radiation.
Theequation of state is
R i
P = p’]‘_l ? .

‘ - (Al)

The homogeneous system  of equations which represents the
flow can bewritten:

ox ox .
o VA% 7O (A2)
whoere
0
g P 0
. N I 0 v 0o 1y
- B 0 0 v, O !

I 0 P o v,

and y is thd™Matio of the specific heat (1
matrix A can be diagonalized

v = 1) The

v, 0 0 o
N O v, ¢cs O 0
8”1 AS” - 0 0 v, 0 s (A3)
0O O 0 v - cs
with
Bp p O p
S” < ° Cs 0 T Cs 1
0 0 Ve, (0]
[ 0 p2 0 pc?
and *
1/8p 0 0 -1/Bpci
G- 1 0 1 /2, O 1/2pc2
SECE 0 1/2¢e O
0 - 1/2¢, o 1/2pc?

The souud speed is ¢2=v/p and B = \/2(7 - 1). However,
since the following tnequalitics hold
-1 8% o -1y

S e 7w (Sn /\)

-1 8% fs) -1y

SH K2} 4 & (Sn /\)
one has to lincarize the equations. Therefore, we let /2 =
Vo + 6P, p=po-ép,u, = v, + 8v, arid wvg == vgo -
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Svg , where(po, Yro, ugo, I) are the steady state solutions
(for example the stan dard Shakura-Sunyaev thin disc) and
(6p,8v,, dug, 81°) are the perturbations, for which the system
is solved. T'he characteristics equations become:

(A s ) Goilles — S wlier) = 0, (®)
(64w 8) () =0, Q

7 (A5)

(804 (01 e)g ] (Grdlan 4 25) =00 (i)

f

{84 (- e)g) Galer - 25) =00 (iv)

Vhe slow characterist ics (1) & (#§) are incoming for v, <O
and outgoing for v, > 0, (iii) is the fast outgoing charac-
teristics and (iv) is the fast incoming characteristics. When
- €s < vy <0, onc solves the system (i) = (e, (i) = (11)e,
(311) = (11)c and (o)== (1v)e; While when ¢, > v, > 0, one
solves (i) = (t)e, (11) = (ii)c, (iii) =(i1i) and (iv)= (iv)e..
The above t1 catiment was applied to two-dimensional prob

lems andled to non-reflecting boundary conditions (Godon
& Shaviv 1995).
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